Earth Science

Takehiko Yagi

Geochemical Research Center (GCRC), University of Tokyo

Acknowledgments

I had been a heavy user of synchrotron radiations (PF and SPring-8) for these more than 35 years to do high P-T X-ray diffractions.

1971 – 2012 : Institute for Solid State Physics, Univ. Tokyo

2012 – 2014: Geodynamic Research Center, Ehime Univ.

2014 – present : Geochemical Research Center, Univ. Tokyo

Outline

Introduction
Materials under pressure
Earth's interior viewed by seismic wave
High-pressure experiments on minerals
High-density minerals discovered by these experiments
Present view of the dynamic Earth
Application to the study of novel materials

Pressures in the universe

1 atm (0.1 MPa)

360 GPa

Bottom of the deepest sea: 0.1 GPa Center of the Earth: 360 GPa Center of Jupiter: 4.5 TPa (10¹² Pa) Center of the sun: 2.4 x 10¹⁶ Pa

Behavior of H₂O at 300 K & high pressure

Earth's interior observed by seismology

F. Birch (1952) "Elasticity and constitution of the Earth' s interior"

Most abundant mineral in the upper mantle

Olivine: (Mg,Fe)₂SiO₄

"peridot"

Olivine - Spinel transition hypothesis

Bernal. J. D. (1936) Jeffery H. (1937)

Experimental proof of Olivine-Spinel transition (I)

Ringwood (1958) Fe₂SiO₄, 600°C, 38 kbar

(simple squeezer apparatus)

Experimental proof of Olivine-Spinel transition (II)

Akimoto (1963)

Tetrahedral press at ISSP

Detailed study of Olivine-Spinel transition

Origin of the 660 km Discontinuity

Possibilities for the "post-spinel phase"

 A_2BO_4 with denser structure $(K_2NiF_4 \text{ type, } Sr_2PbO_4 \text{ type, } \cdots)$ $ABO_3 + AO$ (ilmenite, perovskite, corundum) + rocksalt $2AO + BO_2$ rocksalt + rutlie

Finding of Silicate Perovskite

- $Mg_2SiO_4 \rightarrow MgSiO_3$ perovskite + MgO
- $MgSiO_3 \rightarrow MgSiO_3$ perovskite

 $Mg_3Al_2Si_3O_{12} \rightarrow (Mg_3Al)(AlSi_3)O_{12}$ perovskit

perovskite (cation: anion = 2:3)

Origin of the 660 km Discontinuity

Possibilities for the "post-spinel phase"

 A_2BO_4 with denser structure $(K_2NiF_4 \text{ type, } Sr_2PbO_4 \text{ type, } \cdots)$ $ABO_3 + AO$ (ilmenite, perovskite, corundum) + rocksalt $2AO + BO_2$ rocksalt + rutlie

Constitution of the mantle

Comparison of calculated property and seismic observation

"The most abundant mineral" of the Earth

Perovskite : the most abundant mineral of the Earth

perovskite-type (Mg,Fe)SiO₃ mineral name : "bridgmanite" after P. W. Bridgman

Crystal Structure of Silicate Perovskite

perovskite structure: fcc close packing of O and A cation

 \rightarrow unusually dense packing

stable structures of ABO₃-type compounds at 0.1MPa at 30GPa

: perovskite

Stability of Silicate Perovskite

Experiments

Knittle and Jeanloz (1987) ; Experiments up to 127 GPa "silicate perovskite is stable throughout the lower mantel"

Kesson et al. (1998) ; Experiments up to 135 GPa "MgPv was found to be present and no additional phases or disproportionations were encountered"

Theoretical consideration

perovskite structure : ultimate dense form of ABO₃-type compounds

perovskite is stable to the bottom of the mantle

Construction of Laser Heated DAC combined with Synchrotron Radiation (I)

Big grant from the government (1995 - 1999)

"Study of the Structure and Properties of the Lower Mantel based on High Pressure and High Temperature experiments"

Photon Factory BL-13

YAG laser

Study of the Minerals in the Lower Mantle

Funamori et al. (1997) *Science* "Transformation in garnet from orthorhombic perovskite"
Miyajima et al. (1999) *Phys. Earth Planet. Inter*. "Garnet-perovskite transformation"
Kondo et al. (2000) *J. Appl. Phys.* "Phase transitions of MnO to 137 GPa."
Miyajima et al. (2001) *Am. Mineral.* "Potential host phase of aluminum and potassium"
Kondo et al. (2004) *Phys. Earth Planet. Inter.* "Phase transitions of (Mg, Fe)O at megabar....."

Construction of Laser Heated DAC combined with Synchrotron Radiation (II)

BL10-XU

Finding of A New Phase in MgSiO₃

Murakami et al., (2004)

Structures of Perovskite and Post-perovskite

CalrO₃, AgTaS₃, UFeS₃, LaYbS₃, UScS₃, ThMnSe₃, UMnSe₃, CeYbSe₃, ••• (high pressures ; MgGeO₃, MnGeO₃, •••)

Theoretical Calculations of Stability and Elasticity (I)

 $\Delta H=H(PP)-H(Pv)at OK$

The elasticity of the MgSiO₃ post-perovskite phase in the Earth's lower mantle, T. litaka, et al., Nature, 430,442(2004)

Figure 3 The variation of compressional (v_p) and shear (v_q) wave velocities as a function of propagation direction. **a.** Perovskite phase at 100 GPa; **b**, post-perovskite phase at 100 GPa. The two dashed lines represent the two polarizations of the shear waves.

elasticity

Theoretical Calculations of Stability and Elasticity (II)

Theoretical and experimental evidence for a post-perovskite phase of MgSiO₃ in Earth's D" layer, Tsuchiya et al., Earth Planet. Sci. Lett., 224, 241(2004)

Theoretical Calculations of Stability and Elasticity (III)

CalrO₃-type Cmcm structure

ab initio simulations based on density functional theory

Theoretical and experimental evidence for a post- perovskite phase of MgSiO₃ in Earth's D" layer,

Oganov and Ono, Nature, (2004)

Stability Field of the New Phase

Seismic Discontinuities in the Mantle

Property of Post-Perovskite Structure

Using CalrO₃ as model material

- MgSiO₃

 formed only above 120 GPa
 unquenchable to ambient condition
- CalrO₃

formed much easily

keep its structure at ambient condition

TEM observation

rheological property

High pressure synthesis of CalrO₃

Synthesized post-perovskite type CalrO₃

Powder X-ray diffraction

a=3.146Å b=9.867Å c=7.298Å space group: Cmcm SEM observation

Needle like morphology

100µm

Radial diffraction technique

Large plastic deformation under uniaxial stress field

X-ray \perp compression axis

Radial diffraction experiment

DAC with large side opening

Photon Factory BL13A

X-ray transparent gasket

Diffractions of post-perovskite phase

Axial diffraction

Lattice preferred orientation in pPv

Radial diffraction of perovskite phase

Current view of the Earth - three dimensional dynamic model -

High P-T *in situ* experiments at the condition of the Earth's center

Beyond the center of the Earth

Micro diamond anvil fabricated by Focused Ion Beam (FIB) method

Culet diameter : 3 μm

"Micro paired-anvil"

Micro anvils placed on top of normal anvils (350 µm culet)

Put sample here

Gasket hole was filled with liquid

Sakai, Yagi, et al., Rev. Sci. Instrum. 86, 033905 (2015)

Diffractions obtained by "1 µm" beam at BL-10

Pressure of 426 GPa was achieved by this technique just recently.

Application of high pressure techniques to the synthesis of new materials

nano-polycrystalline diamond synthesized at 15 GPa

Irifune et al., (2013)

Synthesis of nano polycrystalline diamond

"Hime dia" synthesized at 15GPa,2000K

6000 ton multi anvil press (Ehime University)

Synthesis of nano polycrystalline stishovite

SEM observation of the crack

New super conductors synthesized under pressure

<u>Tc > 10 K</u>

_				
	material	Tc	structure	
•	ZrRuSi	12.2	Fe ₂ P-type	
•	ZrRuCe	10.5	TiFeSi-type	
•	ZrRu4P2	11	ZrFe4Si2-type	
•	LaRu4As12	10.3	skutterudite	

• ZrRhSi 10.5 Co₂P-type

Synthesis of various nitrides

Synthesis of single crystals

GeO₂

Summary

- High-pressure minerals in the Earth's deep interior were clarified through high-pressure and high-temperature X-ray experiments.
- High P & T *in situ* X-ray diffraction study is now possible at the condition corresponding to the center of the Earth.
- Further efforts are made to extend the pressure ranges beyond the center of the Earth
- Experimental techniques developed for such studies are now applied to make new novel materials.