

MONASH University

Imaging and Radiotherapy with Synchrotron X-rays

Rob Lewis

Medical Imaging, University of Saskatchewan Medical Imaging and Radiation Sciences, Monash University Scott Automation and Robotics

📮 UNIVERSITY OF SASKATCHEWAN

Other Modalities

Ultrasound

- ✓ Cheap
- \checkmark No radiation dose
- ✗ Cannot penetrate bone or air
- Spatial resolution degrades with depth
- Scan times are minutes

MRI

- ✓ Fantastic soft tissue contrast
- \checkmark Minimal radiation dose
- × Expensive
- Scan times are many minutes
- Spatial resolution f(B)

Diagnostic Imaging in Australia

MRI-CT Comparison

MRI not always best contrast

😽 UNIVERSITY OF SASKATCHEWAN

http://www.ct-scan-info.com/head-ct.html

- Fabulous Images but
- Cost:
 - **CT:** From \$700 to \$2,200
 - **MRI:** From \$1200 to \$4000
- Time taken for scan:
 - **CT:** Usually completed within 5 minutes
 - MRI: Typically 30-40 minutes
- Narrow tunnel and noisy
- Metal implants and pacemakers contraindicated

MRI Accidents

Current Trends

- Preventative medicine is a good idea
- Medical imaging procedures can detect disease at a stage when it can be treated effectively
 - Funding bodies (public and private) will fund imaging procedures
- There is a trend towards more imaging, particularly screening
 - ♦ Mammography
 - Whole body CT scans
- Screening means go fast!

e lumen, very sharp

SOMATOM Definition Flash

SIEMENS

Flash speed. Lowest dose.

collimation: 128 x 0.6 mm spatial resolution: 0.33 mm scan time: 2.3 s scan length: 613 mm rotation time: 0.28 s 100kV, 183 effective mAs 6.2 mSv

Courtesy of Centre Cardio-Thoracique de Monaco / Monaco

Dual Energy CT

Plaque in Carotid 9 s for 348 mm Spatial Res. 0.33 Rotation 0.33 s 140/80 kV 60/230 mAs (eff.)

Imaging Using Ionising Radiation

- Will be here for a long time because it;
- Can perform very fast scans
- Can tolerate implants
- Is relatively cheap
- So what is the risk from all this radiation?

Fluence and Dose: Head

What is the Risk from Radiation?

- A lifetime dose of 100mSv increases cancer risk by ~1%
 - ♦ 1000 chest x-rays
 - 100 mammograms
 - 50 head CT scans
 - 10 abdominal or pelvic CT scans
- Background Dose is ~ 2.4mSv/year
- 11 March 2011, Tsunami hits Fukushima. Radiation ~210mSv/yr
- On 31 May, 2011 Fukushima prefecture dose rate was 13mSv/yr
 - 7.5 years to reach 100mSv
- It takes most radiation-induced cancers 10 to 20 years to develop in adults
- The average lifetime risk of developing cancer from all causes is 42%
- From early 1980s to 2006, 7× increase in population dose from medical procedures

🔄 University of Saskatchewan 👘

MONASH University

3rd Generation CT Scanner

- Multiple detectors
- Translation-rotation
- Large fan beam
- Patient stationary for each
 2-D slice acquisition;
 about 0.1 seconds per
 slice
- kV = 120, mA = 500
- Image then reconstructed in about 0.1 seconds

Volume CT image

Uses 3rd or 4th generation scanner. Continuous patient motion.

> Often with multi-slice detector arrays. Affords "true" 3-D volume images.

Back Projection in Practice

Beam Hardening

Beam Harding Artefacts

niform

Cone Beam Artefacts

Inner detector row image

Outer detector row image

Exploit What Synchrotrons Are Good At

- So there is still work to do optimising imaging with ionising radiation
 - Eliminating artefacts
 - Reducing Dose
- Synchrotron is a great tool for performing medical physics studies
 - Synchrotron beams can be monochromated
 - No beam hardening
 - Synchrotron beams are almost parallel
 - No cone beam artefacts
 - Scatter removal with no dose penalty
 - Synchrotron beams can be tuned
 - Select optimal energy
- We can do studies of better x-ray imaging and develop new methodologies

Subtraction Radiography

Low

S MONASH W. Thomlinson et al ESRF

Patient 1 - weight: 70 kg - iodine: 42ml

Synchrotron IV injection n.b. 2 – LAO 40 Conventional angiography Intra arterial injection

UNIVERSITY OF SASKATCHEWAN

Synchrotron Clinical Studies

Coronary Angiography

- Several hundred patients in Hamburg and at ESRF
- Synchrotron sensitivity allowed venous injection rather than arterial as is required in hospital
- Not all coronary arteries always visualised well

Synchrotron Radiography

😽 University of Saskatchewan 🛛 🚦

^{SMONASH University} RA Lewis et al SPIE Vol. 4682 (2002) 286-297

Refraction

Analyser Based Imaging

Sometimes called Diffraction Enhanced Imaging

Crystal Rocking Curve

🔄 UNIVERSITY OF SASKATCHEWAN

Refractive index for X-rays is less than 1 by about 1 part in a million

ABI How it works

ABI Mathematics

- I_L & I_H = Intensities on low and high angle sides of rocking curve
- Grad_L & Grad_H =
 Gradients of low and high angle sides of rocking curve
- I_R is intensity
 Δθ_z= refraction angle

$$I_{L} = I_{R} \cdot \left(R_{L} + \operatorname{Grad}_{L} \cdot \Delta \theta_{Z} \right)$$
$$I_{H} = I_{R} \cdot \left(R_{H} + \operatorname{Grad}_{H} \cdot \Delta \theta_{Z} \right)$$

$$\operatorname{Find}(I_{R}, \Delta \theta_{Z}) \rightarrow \begin{pmatrix} \operatorname{Grad}_{H} \cdot I_{L} - \operatorname{Grad}_{L} \cdot I_{H} \\ \overline{\operatorname{Grad}}_{H} \cdot R_{L} - \operatorname{Grad}_{L} \cdot R_{H} \\ \\ \overline{\operatorname{Grad}}_{H} \cdot I_{L} - \overline{\operatorname{Grad}}_{L} \cdot I_{H} \end{pmatrix}$$

TORMam Conventional

Spectrum = Mo:Mo 28kVp

🖏 University of Saskatchewan

TORMAM Peak

Energy = 20keV

🚭 University of Saskatchewan

TORMAM Refraction

Energy = 20keV

😽 University of Saskatchewan

Advantages of synchrotron micro-CT

12 hrs

0.5 hrs

David Cooper, UofS; David Thomas, Melbourne

Mouse CT

🚭 University of Saskatchewan

David Parsons and Karen Siu

Mouse Cochlea

David Parsons and Karen Siu

Mouse Fly Through

Kaye Morgan, Karen Siu, David Parsons

🔀 MONASH University

Timm Weitkamp ESRF ID22

Propagation Based Imaging

147cm

Phase Contrast

Lungs of newborn rabbit Propagation distance = 1m Energy = 24 keV

Phase Contrast CT

SNR increased 10x, enabling high quality visualization

Rat Brain in agarose gel

Brain undetectable in projection image (a), and faintly visible with 5m propagation distance (b) in CT reconstruction. Energy = 24 keV.

Rat Brain in agarose gel

Phase retrieval renders structures of the brain highly visible against the noise. Improvement in SNR of 200x!

UNIVERSITY OF SASKATCHEWAN

Grating Interferometry

UNIVERSITY OF SASKATCHEWAN

🔀 MONASH University

Phase Contrast : Mouse Embryo

Absorption CT

Phase CT

SASKATCHEWAN

Hoshino M et al Biology Open 1, 269–274

Phase Contrast : Mouse Embryo

6 days

2mm

9days

10days

1.1g/cm³

6 & 9 days: 4.9µm/pixel 10-15 days: 23.5µm/pixel

11days

13days

1.0g/cm³

Hoshino M et al Biology Open 1, 269–274

Phase Contrast: Mouse Embryo

Hoshino M et al Biology Open 1, 269–274

Synchrotron Brain Imaging

3600 projections3m propagation distance1s/image

UNIVERSITY OF SASKATCHEWAN

K Uesugi & M Hoshino JASRI Spring-8

Phase Contrast: Brain

N. Yagi, SPring-8

Radiation Dose Resolution Trade-off

Synchrotrons allow fantastic spatial resolution but.....

$$Dose_{skin} = \frac{2e^{\mu L}SNR_{out}^2}{DQE(f)\mu^2 size_{obj}^4 Contrast_{\mu}^2} E_{\gamma}(\frac{\mu}{\rho})$$

🐯 University of Saskatchewan 🛛 🐰

Phase Contrast Dose Advantage

S UNIVERSITY OF SASKATCHEWAN S MONASH University

^{sity} RA Lewis et al SPIE Vol. 4682 (2002) 286-297

Complex Refractive Index

- Coherence properties enable phase contrast
- Contrast arising from phase effects does not require dose to be deposited in the object

Clinical Mammography at ELETTRA (Trieste, Italy)

Aim of the study: to prospectively evaluate on a limited number of selected patients the diagnostic contribution of SR Phase Contrast mammography in patients with doubtful or suspicious breast lesions identified at the conventional mammography in the Hospital

THE COLLABORATION

Department of Physics - University of Trieste and INFN F. Arfelli, E. Castelli, R. Longo, L.Rigon ELETTRA - Sincrotrone Trieste SCpA

A.Abrami, K.Casarin, V.Chenda, D.Dreossi, R.H. Menk, E.Quai, G. Tromba, A.Vascotto Department of Radiology - University and Hospital, Trieste

P. Bregant, M.A. Cova, D. Sanabor, E. Quaia, M. Tonutti, F. Zanconati

Phase 1: March 2006 - December 2009 (71 patients) screen-film system, first protocol for recruitment

Phase 2: in 2012- Image Plate detector, Fuji FCR Capsula XL II

Phase 3: from 2013- digital detector, new recruitment protocol

Clinical Mammography at ELETTRA (Trieste, Italy)

Conventional mammography

MGD 1.2 mGy

Synchrotron radiation mammography MGD 0.6 mGy

RESULTS

Evaluation of lesions and structure visibility: comparing mammography with SR and conventional (hospital) mammography

MSR allows a better visualization, both for the lesions and for the glandular tissue

Hospital mammography identified:21/40 patients with final benign diagnosis23/29 pt with final malignant diagnosis

MSR identified:

38/40 patient with final benign diagnosis25/29 patient with final malignancy diagnosis

E. Castelli, M.Tonutti, F.Arfelli, R.Longo, E.Quaia, L.Rigon, D.Sanabor, F. Zanconati, D.Dreossi, A. Abrami, E.Quai, P.Bregant, K.Cesarin, V.Chenda, R.H. Menk, T.Rokvic, A.Vascotto, G.Tromba, MA Cova, *Mammography with Synchrotron Radiation: First Clinical Experience with Phase-Detection Technique*, Radiology, 259 (3), 684-694(2011)

CT and Radiography Problems

X-ray Dose

Phase Contrast Helps. Synchrotron easy. Gratings?

Scatter

- Greatly reduced by slot scanning. Both conventional and synchrotron can use this.
 - Beam Hardening
- Eliminated by monochromatic radiation. Synchrotron only
 - Cone Beam Artefacts
- Eliminated by parallel beam. Synchrotron only.

Synchrotron Medical Imaging

- Synchrotron Medical Imaging
 - ✓ Fantastic spatial resolution
 - ✓ Reasonable scan times
 - ★ Uses ionising radiation
 - × Very limited access
 - ► Extremely expensive
- Synchrotrons are not currently suitable for "routine" medical procedures

Phase Contrast in the Clinic

Konica Minolta REGIUS PureView

Development of standing type machine

second finger

first finger

Measurement : 32 sec X-ray exposure : 19 sec Skin dose : **5 mGy**

Junji Tanaka, Masabumi Nagashima, Kazuhiro Kido, Yoshihide Hoshino, Junko Kiyohara, Chiho Makifuchi, Satoshi Nishino, Sumiya Nagatsuka, and Atsushi Momose, "Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot-Lau interferometry", Z. Med. Physk, *submitted*.

Enhanced spiculations visibility

Z. Wang, XNPIG2012

Birth: An amazing event

- In utero lungs are full of liquid
- At birth lungs fill with air
- The transition is poorly understood
- Preterm and caesarean section infants can have major problems and often need to be ventilated
- We don't know how to best ventilate and sometimes ventilation injures the lung

SPring-8 - Super Photon ring-8GeV

Why a Long Beamline?

🚭 University of Saskatchewan

MRI State of the Art

Bronchoconstriction induced by metacholine

😽 UNIVERSITY OF SASKATCHEWAN

Bruker BioSpec[®] 47/40

Rabbit Pup Lung Imaging - Delivery

Artificial Ventilation

Post Mortem Artificial Ventilation

UNIVERSITY OF SASKATCHEWAN

RA Lewis et al Phys. Med. Biol. **50,** 5031 S. Hooper et al FASEB **21**, 3330 (2007)

Phase Retrieval: Single Image Approximate 'contact' intensity from Beer's Law $I(\mathbf{r}_{\perp}, z=0) = I_{\Omega} \exp(-\mu T(\mathbf{r}_{\perp}))$ Approximate 'contact' phase by $\phi(\mathbf{r}_{\perp}, z = 0) = -\frac{2\pi}{\lambda} \, \delta T(\mathbf{r}_{\perp})$ Use Transport-of-Intensity Equation (TIE) $\nabla_{\perp} \cdot (I(\mathbf{r}_{\perp}, z) \nabla_{\perp} \phi(\mathbf{r}_{\perp}, z)) = -\frac{2\pi}{\lambda} \frac{\partial}{\partial z} I(\mathbf{r}_{\perp}, z)$ Solve for object's projected thickness using Fourier **Derivative Theorem** $T(\mathbf{r}_{\perp}) = -\frac{1}{\mu} \ln \left\{ \mathbf{F}^{-1} \left\{ \mu \frac{\mathbf{F} \left\{ M^2 I(M\mathbf{r}_{\perp}, z = R_2) \right\} / I_o}{MR_2 \delta |\mathbf{k}_{\perp}|^2 + \mu} \right\} \right\}$

Phase to Projected Thickness

😽 University of Saskatchewan

🔀 MONASH University

Marcus Kitchen, Monash

Lung aeration: Airway liquid clearance

🔀 MONASH University

Lung aeration: Airway liquid clearance

Inspiration forces liquid out of airways

Medical Relevance

- Respiratory Ventilation
- Positive End Expiratory
 Pressure (PEEP) used to be excluded from international resuscitation guidelines for ventilating infants due to lack of evidence
- It is now recommended as a direct consequence of this work

Rabbit Pup: No PEEP

UNIVERSITY OF SASKATCHEWAN

RA Lewis et al Phys. Med. Biol. **50,** 5031 S. Hooper et al FASEB **21**, 3330 (2007)

Rabbit Pup: With PEEP

😽 University of Saskatchewan 🛛 🐰 MC

Te Pas et al Pediatric Research **65**(5), 537-541 2009 S. Hooper et al FASEB **21**, 3330 (2007)

Effect of PEEP in Ventilated Preterm Rabbits

Measuring Lung Motion

 Particle Image Velocimetry detects speed & direction of particle (lung) motion

Cross Correlation

Particle Image Velocimetry

A. Fouras, et al

Disease Detection

Plots of regional compliance, calculated from motion maps in mouse lungs

Healthy Lung, showing uniform compliance

Fibrotic lung, showing regional differentiation of compliance

A. Fouras, S Dubsky et al

🐺 UNIVERSITY OF SASKATCHEWAN

Whole Breath Lung Morphology

S Dubsky, A Fouras et al

S Dubsky, A Fouras et al

S Dubsky, A Fouras et al

Simultaneous Phase Imaging and Angiography

Major Problem: Technical

Static beam greatly limits 4D imaging (x, y, z, t)

Picture taken from above of crystals and a sample

X-ray triscopic images of mouse chest

Absorption contrast image measured by single detector

Refraction contrast image measured by three detectors

UNIVERSITY OF SASKATCHEWAN

Masato Hoshino et al JSR Volume: 18 Pages: 569-574

Synchrotron Pros 'n Cons

Pros

Tunable Wavelength

- ✓ Contrast specificity
- ✓ Target elements

• High Intensity

- \checkmark Short exposure times and hence movies
- ✓ MRT

Scatter Reduction

- ✓ Reduced dose, improved contrast
- Phase Contrast
 - \checkmark Reduced dose, improved contrast

Cons

- Fixed beam
 - Rapid CT very difficult
- Limited availability
- High Price

Radiotherapy

- The tumour can always be destroyed.....
- ... If we give it enough dose
- The question is.....
- ... Can we keep the patient alive and healthy whilst we do it?
- The radiation dose we can give to the tumour is limited by.....
- ... How much dose healthy tissue can tolerate whilst we try to zap the tumour

Radiotherapy

- The radiation dose that can be delivered to the tumour is limited by.....
- ... The tolerance of the surrounding healthy tissue
- Conventional Therapy
 - Uses a LINAC (high energy Xrays several MeV)
 - Uniformly irradiates tumour

Deuteron Beam: Mouse Visual Cortex

Zeman et al, Radiat Res 15 (1961) 496

MONASH University

Peak to Valley Ratios

🔀 MONASH University

Dose Depth Curves

Synchrotron Spectrum (~100keV)

Loss of Pattern with Depth

Piglets

Stained horizontal tissue section of piglet cerebellum 15 months after irradiation. 25μ m wide beams; spacing 210μ m. Skin entrance dose 300 Gy.

5mm

Laissue J A et al 2001 Proc. SPIE 4508 65-73

MRT on Mice

- Radiobiology of MRT is not well understood
- An understanding of the radiobiology is crucial for the optimisation of MRT and for any clinical implementation
- Understanding MRT will also inform conventional radiotherapy
- Mice are by far the best characterised mammal
 - Many GM mouse models already available
 - Many assays have been developed

Exfoliation

Survival Fractions EMT 6.5

Results - Immunohistochemistry

H&E and CD45 Leukocyte Common Antigen (LCA) Staining of MRT-irradiated Mouse skin 5.5 days PI (x 100)

Intact hair follicles & sebaceous glands

尺 MONASH University 🔄 UNIVERSITY OF SASKATCHEWAN

Using Radiochromic Film to Locate Microbeams

γH2AX/BrdU IHC post 560 Gy MRT treated Control

48 hours after irradiation

Jeff Crosbie, Peter Rogers, Robyn Anderson, Rob Lewis

Splitting Hairs!

Conclusions

- X-rays are here for a while
- Synchrotrons have an important role in developing new x-ray methods in medicine
- In order to translate the research into the clinic, some human studies are necessary
- Much can be achieved with animal studies

The Team

- Stuart Hooper
- Megan Wallace
- Marcus Kitchen
- Melissa Siew
- Beth Allison
- Andreas Fouras
- Karen Siu
- Arjan te Pas
- Chris Hall
- Naoto Yagi
- Kentaro Uesugi
- Kaye Morgan
- Sally Irvine
- David Parsons
- Peter Rogers
- Jeff Crosbie

