

Overview of Synchrotron Radiation Research and the AOFSRR

Richard Garrett Senior Advisor, Synchrotron Science, ANSTO

Asia/Oceania Forum for Synchrotron Radiation Research

Founded - 2006

AOFSRR Objective

The objective of the AOFSRR is to <u>encourage regional collaboration</u> in, and to <u>promote the advancement of</u>, <u>synchrotron radiation research</u> and related subjects in Asia and Oceania.

Specific Activities:

- (1) The annual workshop and Cheiron School, and organization of other scientific collaboration meetings;
- (2) Exchange of information of facilities and user groups;
- (3) Provision of a framework for cooperative activities;
- (4) Any activities that promote and expand the role of synchrotron light source facilities and synchrotron based research in the Asia – Oceania region.

Large: ESRF (+PETRA) Medium: Diamond, Soleil, SLS Soft X 3rg gen: Elettra, Max, BESSY II ... Next generation: FLASH, European XFEL, FERMI, PSI..

ESRF

Diamond

FLASH

LCLS (Stanford)

Large: APS Medium: CLS, NSLS II, SSRL Soft X 3rd Gen: ALS 2nd gen: NSLS, CHESS, Brazil, Alladin... Next generation: LCLS,

The Americas

JLab, Cornell ERL(?)

- Facilities equal or better than Europe & USA
- Many bi-lateral agreements between facilities
- Few relationships between user communities
- No real regional organisation

Associate Members:

- Malaysia
- New Zealand
- Vietnam

Members:

- Australia
- China
- India
- Japan
- South Korea
- Singapore
- Taiwan
- Thailand

Asia/Oceania Forum for Synchrotron Radiation Research

AOFSRR 2013

The 7th Asia Oceania Forum for Synchrotron Radiation Research

The 1st AOFSRR Summer School Cherron School SPring-8, Japan

September 10th – 20th 2007 Organizer:

AOPSRR, BIKEN/SPring-8, JASHJ KHK-PF the Orient School erations - or post data self-induced coupled as well as perpendic of spin of the million school and actively go forgathure school, postArticle young scientes and very power in Ann Ocean region.

päiveg Connotine and Nutl webbal: Manipale America (Presidential ACPSRI), Sport er Principal: Kerg Lang (Vice President of ACPSR), Sanar eretary: Mauka Takata (CKC/N),ASR(SPreg-4, Appen

Annuel Annuelle (Assendaria) Charra Shine Thara (Assendaria) Charra Shine Thara (Assendaria) Belsen (Moor (Singaparet) Agenetin Norolockar (Cirkal) Mangio (Sinevala (Cirkal) Shi A, an (Charg) (Charala) Shi A, an (Charg) (Charala) Shi A, an (Charg) (Charala) Norolock (Ron (Sineval) Norolock (Ron (Sineval) Norolock (Ron (Sineval)

nal Degenting Meaker Should Talaca (EUCLX-STREET) Mayo Sanai (ASHI Selara 8) Gala Selata (ASHI Selara 8) Talac (Kana (ASHI Selara 8) Talac (Kana (ASHI Selara 8) Talac (Kana (ASHI Selara 8) Mang (ASHI Selara 9) Mang (ASHI Selara 9) Mang (ASHI Selara 9) Mang (Con (ASHI Selara 9) Mang (Con (ASHI Selara 9)

ematicuit Adheary Beard "To be availat and lanyedi Securate (1953/2014pan) kin Kin (2058/2014pan) Manag Univer (APS/05A) (..., "Tim" Selag (1950/2004) ebach Maarth (1963/pan) ebach (Maarth (1963/pan)

http://cheiron2007.spring8.or.jp

AOFSRR Activities

Annual Workshop

Year	Host		
2006	Tsukuba, Japan		
2007	Hsinchu, Taiwan		
2008	Melbourne, Australia		
2009	Shanghai, China		
2010	Pohang, South Korea		
2011/12	Bangkok, Thailand		
2013	Himeji, Japan		
2014	Hsinchu, Taiwan		
2015	Melbourne, Australia		

Cheiron School: Always SPring-8 !!

Promote Synchrotron Research

- Nations can build new communities at other facilities
 - Australian soft X-ray program at NSRRC and
 - NSRRC hard X-ray program at SPring-8
 - Indian beamline at the Photon Factory
- Promote SR research in non-member nations in the A-O region
- Assist SR science in developing nations
 - Cheiron School
 - Assistance to attend conferences
 - Work with other organisations (IUCr etc)

Synchrotron Radiation

X25 wiggler beam, NSLS

Outline

- What is a synchrotron?
- What are the Applications
- How is the light produced & what are its characteristics?
- Brief Basics of Synchrotron Beamlines
- The Future (is here already): "Next Generation Sources"
- A Cool Example

A brief history

• First observed:

1947, General Electric, 70 MeV synchrotron

• First user experiments:

1956, Cornell, 320 MeV synchrotron

• First insertion Device:

1979, 7 pole wiggler, SSRL

- 1st generation light sources: high energy physics synchrotrons and storage rings used parasitically for synchrotron radiation – eg DESY (Germany), INS-SOR (Tokyo), SPEAR (USA), (1960's, 1970's)
- 2nd generation light sources: purpose built synchrotron light sources, eg Photon Factory, NSLS, Daresbury (1980s onwards)
- 3rd generation light sources: optimised for high brilliance with low emittance and Insertion Devices; SPRing-8,ESRF, APS, Diamond, ...(1990's onwards)
- Free Electron Laser sources: FLASH (Germany), LCLS (USA), SACLA (Japan), FERMI (Italy) ... (2000's)

• Next??

A Synchrotron Step by Step

Unique Characteristics of Synchrotron Radiation

- Extremely high brightness. Modern synchrotron sources are about 10 billion times as intense as a laboratory X-ray generator: dilute samples; fast measurements; trace elements;
 - Low divergence: high intensity can be focussed onto tiny samples: Microscopies
- Wide X-ray energy spectrum:
 - the optimum X-ray energy to be chosen for each experiment;
 - > X-ray spectroscopies are possible eg EXAFS
- Polarisation: various dichroisms; magnetic imaging; molecular orientation;
- Time structure: time of flight and very fast timing.

X-rays and their Interaction with Matter

X-ray Diffraction -> Structure

X-ray Fluorescence → trace element analysis

Transmitted Photons:
→ Imaging
Absorption Spectroscopy
→ Chemical information

	Synchrotron	Proton	Electron Microscope	SIMS	Neutron
Sensitivity	~	•	×	~	×
Sub micron	~	•	~	×	×
Chemical Information	~	×	•	•	×
In-situ	~	•	×	×	~
Atomic Structure	\checkmark	×	\checkmark	×	✓

Sometimes High Intensity = Better Data Synchrotron Powder XRD

Top synchrotron data; Bottom: lab data.

B. H. Oconnor, A. van Riessen, J. Carter, G. Burton,

J. American Chemical Soc. 80 (1997) 1373

ACCE Synchrotron Radiation

Synchrotron Powder Diffraction

- Higher Resolution and single wavelength
- Enhanced Sensitivity
- Greater "Q" Range (more reflections)
- Variable energy/ wavelength

Synchrotron data from APS beamline 11-BM

Preparation, structure and electrochemistry of LiFeBO₃: a cathode material for Li-ion batteries†

L. Tao,^a G. Rousse,^b J. N. Chotard,^a L. Dupont,^a S. Bruyère,^a D. Hanžel,^c G. Mali,^{de} R. Dominko,^d S. Levasseur^f and C. Masquelier^{*a}

Cite this: J. Mater. Chem. A, 2014, 2, 2060

2015 Cheiron School

Structure informs Function: Insulin bound to it's cell wall receptor

The 3D structure of the insulin molecule was solved by Dorothy Hodgkin in 1969 after an extraordinary 35 year effort!

The 3D structure of insulin bound to its target receptor is a huge milestone towards better diabetes treatment and could lead to the design of synthetic insulin compounds.

ATP Synthase: a Molecular Motor

H. Wang and G. Oster (1998). Nature 396:279-282.

John Walker won the 1997 Nobel Chemistry prize for solving the F1 catalytic domain using synchrotron radiation at Daresbury, UK. Atomic structure informs biological function

Broad Energy Spectrum: <u>SR Only Spectroscopies</u> eg Xray Absorption Spectroscopy

XANES: near edge structure

Sensitive to chemical environment of absorbing element.

Often different valence states have markedly different XANES spectra.

EXAFS: extended structure to ~1 keV above an absorption edge

Nearest neighbour atomic distances, coordination etc. Crystals not required: disordered systems like solution species can be measured.

Amorphous GaAs EXAFS and Fourier transform.

Near Edge Spectroscopy: Chemical Sensitivity

Carbon K-edge Spectra

XANES of Pt located in a tumour cell Hambley, U Syd

Imaging

Radiography

Mapping

Imaging

Some Imaging Needs Focusing optics

Reflective (Kirkpatrick-Baez mirrors)typical ~1 μmHigh efficiency, achromatic, limited to ~10 nm

Diffractive (Fresnel zone plates) Moderate efficiency, limited to ~10 nm

typical ~ 100 nm

Refractive (compound refractive lenses) 10s μm - ~ 50 nm Low efficiency, highly chromatic, aberrations Works well with high energy X-rays

Contrast mechanisms in x-ray imaging

- Absorption measure electron density; can be element specific
- Fluorescence measure elemental distribution
- > **Spectroscopy** extract chemical state, spin state
- Diffraction reveal structure, strain, magnetism, charge...
- Phase measure real part of refractive index

In general with X-rays:

- Natural sample contrast is often possible; staining not required
- Image structure of thick samples, sectioning not required
- More penetrating, less damage, less charging than with electrons
- In situ imaging image samples in natural environment.

Phase Contrast

Refractive index:

for X-rays it is less than 1 by about 1 part in a million

$$n = 1 - \delta - i\beta = 1 - \frac{r_e}{2\pi} \lambda^2 \sum_i n_i f_i(0)$$

- Absorption contrast: sensitive to *Im(n)*
- Phase contrast: sensitive to *Re(n)*
- At high X-ray energies, phase contrast wins

Phase Contrast

2. Differentiation manage (DEI)

Diffraction Enhanced Imaging

- Edge/density gradient sensitive
- Move on rocking curve to change contrast

X-ray phase imaging: Biology and Materials

X-ray Fluorescence Microscopy

Conventional Fluorescence Microscope: APS 2ID-D

Advanced fluorescence detector at the AS

Annular geometry

- Maximises solid angle, sample @ 90°
- 384 Si pixel detector array (BNL, Siddons etal)
- No constraint on lateral sample size and scan range

+ Parallel data processing

- CSIRO: HYMOD2 pipelined, parallel processor (Ryan etal)
- Whole XRF spectrum acquired and analysed in real time

+ Fast Scanning Stage

- Data acquired "on the fly"
- milli-second dwell times cf 1 second or greater normally

= New micro-XRF capability at the AS X-ray Fluorescence Microscope beamline

XFM image definition (number of pixels) limited by dwell time

Long dwell → Low Image Definition

- ~1 s / pixel (for readout of 1-16 detector spectra)
- 1.3 hours \rightarrow 67 x 67 pixels

Short dwell \rightarrow Good image definition

- 32 ms / pixel
- 1.3 hours → 375 x 375 pixels (30 fold increase)
- New Maia detector

Courtesy C. Ryan, CSIRO

Golden Gum Leaves

ground

CSIRO Minerals Down Under Flagship (Mel Lintern) The Australian Synchrotron

Photon Energy (keV)

Generation of Synchrotron Radiation: Radiation from Accelerating Charge

Low energy electrons OR electron frame: Radiation in all directions Example: Radio waves from a transmitter.

$$\frac{1}{\gamma} = \frac{\mathbf{m_0 c^2}}{\mathbf{E}} = \sqrt{1 - \left(\frac{\mathbf{v}}{\mathbf{c}}\right)^2}$$

High energy (relativistic) electrons – Laboratory frame:

Radiation pattern swept into a narrow cone in the forward direction = High brightness!

E = electron beam energy

.7 mrad Singapore γ = 1400 .04° Light Source 700 MeV .2 mrad Australian $\gamma = 6000$.01° Synchrotron 3 GeV .06 mrad Spring-8 $\gamma = 16000$.004° 8 GeV

Third Generation Sources: Undulator Insertion Devices

Section of the Australian Synchrotron

Beamline Design Goals

- Deliver the required X-ray beam to the experiment:
 - Energy and bandwidth
 - Spot size
 - Divergence/convergence
- Preserve source characteristics eg intensity, brightness, coherence
- Optimise signal / background
- Be very stable and reproducible, in position, intensity and energy
- Be safe to operate
- Be user friendly to operate
- Achieve all the above within a reasonable budget !

Hard X-ray Beamline: Si crystal monochromator E > 4 keV

Soft X-ray Beamline: Grating monochromator E < 2 keV

Mirrors for Synchrotron Beamlines

- Deflection
- Focusing
- Harmonic Rejection
- Power Reduction

Critical Angle/Reflectivity with Energy: Rhodium Coated Mirror Example

An example beamline: the AS Xray Absorption Spectroscopy Beamline

2013 Cnevron School

SR Development is towards higher brightness – why?

Originally (2nd Generation sources) :-

- High intensity through slits or on sample;
- High energy resolution:
 - Diffraction
 - Spectroscopy
- Focusing optics:
 - smaller samples
 - Fluorescence mapping

 Small vertical beam of 2nd and especially 3rd generation is good match to vertical dispersion & grazing optics.

SR Development is towards higher & higher brightness – part 2

- Higher spatial resolution:
 - Tiny samples (protein crystals...)
 - Nano-structure materials
 - Non-homogeneous samples...
- Focusing optics image the source
 - Smaller focus (smaller and smaller xtals) or
 - More working dist for same focus size
- New imaging techniques especially coherence based imaging
- Many techniques brightness/coherence limited

2015 Cheiron School

Diffraction Pattern

New Sources:

XFELs

Next Step - X-ray Lasers? Yes → FELs

<u>Remarkable Features of XFEL producing $\lambda < 0.1$ nm X-Rays</u>

- O High Peak Brilliance
- O <u>Narrow Pulse Width</u>
- **O** High Degree of Coherence

Linac-Based Free Electron Laser Self-Amplified Spontaneous Emission (SASE)

T. Ishikawa, RIKEN SPring-8 Center

"Diffract and Destroy": Single Shot Imaging at the FLASH Soft X-ray FEL

H. Chapman et al., *Nature Physics* 2, 839 (2006)

Reconstructed image: no signs of damage caused by the pulse.

First serial femtosecond crystallography experiments at LCLS/AMO/CAMP - 7 A resolution

Chapman et al Nature 470: 73 (2011)

Gas focussed liquid jet: 4μm diam., flow rate 10- 14 μl min, 10 ms/s De Ponte et al., *J. Phys. D* **41**, 195505 (2008)

Radiation damage-free data collection

Beitlich *et al.*, JSR (2007) → on-line spectroscopy shows radiation damage in chloroperoxidase crystal at a synchrotron in seconds at a low dose rate (28 kGy/s)

Kern *et al.*, Science (2013) →No radiation damage to metal cluster in Photosystem II during diffraction at LCLS

Time-resolved pump-probe experiments on photosensitive proteins

Best time-resolved MX (Laue, synchrotron) done by F. Schotte/Ph. Anfinrud has 100 ps time resolution. With FELs this can be reduced to ps/hundreds of fs.

Coherent diffractive imaging of single particles by the diffraction-before-destruction approach - 10¹²⁻¹³ photons 100 nm - 10 keV focus - 10 fs pulse ~10²¹ W/cm² Measure strugture wetore destroyed? 2 fs pulse (FWHM) 20 fs 0 fs 2 fs 5 fs 10

Calculations. in vacuum Neutze et al., Nature 2000

FELs: Many research areas

Femtosecond experiments

- pump-probe experiments on atoms and molecules (femto-chemistry)
- sum-frequency generation
- serial crystallography

Interaction of ultra-intense XUV pulses with matter

- multiphoton excitation of atoms, molecules, clusters...
- creation and characterizaton of dense plasmas
- imaging of nano-objects and biological samples

Investigation of extremely dilute samples

- photodissociation of molecular ions
- highly charged ions
- mass selected clusters

Investigation of surfaces and solids

- XUV laser desorption
- surface dynamics
- femto-magnetism
- study of highly correlated materials
- Iuminescence under FEL radiation
- meV-resolution photon and photoelectron spectroscopy of surfaces and solids with nm resolution

FELs are Great, BUT...

- Only a few of them and only a few (at the moment one) experiments at a time
 - Capacity very limited; difficult to access
 - Each experiment VERY expensive
- Technical challenges at every step
 - Source, optics, samples detectors, data etc
- SASE Process every pulse different
- Can we make a brighter synchrotron light source to "fill the gap" ?
- Truly enable coherence-based techniques on storage rings

Brightness Limit is a Diffraction Limited Source

Emittance characterises the brightness of a source; it is the product of source size and divergence in a particular dimension.

For SR from a single electron, the emittance/brightness is diffraction limited:

$$\epsilon_r = \sigma_r \sigma_{r'} = \lambda / 4\pi$$

$$\lambda_{\mathbf{DL}(\mathbf{x},\mathbf{y})} = 4\pi\epsilon_{\mathbf{x},\mathbf{y}}$$

 $\epsilon_{r} = \sigma_{r} \sigma_{r'} = \lambda/4\pi$ So wavelength corresponding to the diffraction limit for a particular emittance: $\lambda_{DL(\mathbf{x},\mathbf{y})} = 4\pi\epsilon_{\mathbf{x},\mathbf{y}}$ Real emittance is combination of radiation emittance and real source size/divergence: $\Sigma_{\mathbf{x},\mathbf{y}} = \sqrt{\sigma_{\mathbf{x},\mathbf{y}}^{2} + \sigma_{\mathbf{r}}^{2}}$

$$\begin{split} \boldsymbol{\Sigma}_{\mathbf{x},\mathbf{y}} &= \sqrt{\sigma_{\mathbf{x},\mathbf{y}}^{2} + \sigma_{\mathbf{r}}^{2}} \\ \boldsymbol{\Sigma}_{\mathbf{x}',\mathbf{y}'} &= \sqrt{\sigma_{\mathbf{x}',\mathbf{y}'}^{2} + \sigma_{\mathbf{r}'}^{2}} \end{split}$$

Brightest 3rd Generation Storage Ring Sources:

Source	energy GeV	ϵ_x nmrad	max. B_n 10^{20}	circ. m	λ_{Dlx} Å	lattice
ESRF	6	4	3.0	844	500	DBA
APS	7	3.1	1.4	1104	390	DBA
SPring-8	8	2.7	2.5	1436	340	DBA
DIAMOND	3	2.7	1.5	561	340	DBA

- Horizontal emittance 3-20 nm.rad
- Vertical emittance ~100 times less
- Very asymmetric beam in straight sections:
 - Horizontal ~ 1mm FWHM
 - Vertical ~ 10 µm
- Far from diffraction limit in Horizontal
 @ 10keV
- Close to diffraction limit in vertical

How to Design a Brighter Ring?

The horizontal emittance is a characteristic equilibrium quantity for each storage ring

$$\epsilon_{\mathbf{x}} \propto \mathbf{E}^{\mathbf{2}} \cdot \theta^{\mathbf{3}} \cdot \mathbf{\Gamma}$$

electron energy: E; angle per bending magnet: heta; Lattice dependent quantity: Γ

Emission of SR also reduces emittance – "natural emittance" of a storage ring is equilibrium between SR and energy spread.

Reduce energy (not too much or no X-rays) Reduce angle of bending magnets More synchrotron radiation

Diffraction Limited Storage Ring

If the "ultimate" target is a: "Diffraction Limited Source" for 10keV Photons:

We Need $\varepsilon_x \sim \varepsilon_y \sim 10 \text{pmrad}$

Vertical emittance already there: challenge is: Reduce horizontal or "natural" emittance ~100x $\varepsilon_x \propto E^2$. θ^3 . Γ

Round beam = A "Nicer" Source

Current 3rd Generation Ring

DLSR

What can be done to make $\ \epsilon_{\mathbf{x}} \propto \mathbf{E^2} \cdot \theta^{\mathbf{3}} \cdot \mathbf{\Gamma}$ small ?

Large ring with lots of cells, reduce electron beam energy

Most 3rd Generation are "double bend achromat" (DBA):

DBA Cell of the Australian Synchrotron

→ many cells → large storage rings - ESRF: 32; APS: 40; Spring-8: 48

High power "damping wigglers": much more SR produced

- NSLS II; PETRA III

Big is better?

Synchrotron Radiation

Large rings, many bending magnets, reduce energy

Wavelength corresponding to the diffraction limit: $\lambda_{{f DL}({f x},{f y})}=4\pi\epsilon_{{f x},{f y}}$

Source	energy GeV	ϵ_x nmrad	max. B_n 10^{20}	circ. m	λ_{Dlx} Å	lattice
ESRF	6	4	3.0	844	500	DBA
APS	7	3.1	1.4	1104	390	DBA
SPring-8	8	2.7	2.5	1436	340	DBA
DIAMOND	3	2.7	1.5	561	340	DBA
PETRA III	6	1	10	2408	126	DBA+DW
NSLS II	3	0.5	30	792	62.8	DBA+DW
PETRA III*	3	0.16		2408	20	DBA+DW

What can be done to make $\epsilon_{\mathbf{x}} \propto \mathbf{E}^2 \cdot \theta^3 \cdot \Gamma$ small ?

Same size Ring, More Bending Magnets

"New" Idea: multi bend achromat (MBA)

- Reduce dispersion and control beam size in the bending magnets
- Achieved by refocusing beam 'inside' bending magnets:- need space
- 'Split' bending magnets -> Multi Bend Achromats

Towards Diffraction Limited Storage Rings – MBA Lattices

Wavelength corresponding to the diffraction limit: $\lambda_{{
m DL}({f x},{f y})}=4\pi\epsilon_{{f x},{f y}}$

Source	energy GeV	ϵ_x nmrad	max. B_n 10 ²⁰	circ. m	$\lambda_{Dlx} m \AA$	lattice	
ESRF	6	4	3.0	844	500	DBA	
Study	E (Ge\	/) (Circumf. (m)	ε _x (pm.rad)	λ _{Dix} (Å)/E	(keV)
PEP-X	4.5		2200		11	1.4/9)
Tevatron	11		6280	1.3		0.16/7	76
PETRA III*	3	0.16		2408	20	DBA+DW	
MAX IV	3	≈ 0.25	40	528	31	7BA	
SIRIUS	3	0.28	20	518	35	5BA	
ESRFII	6	0.16	100	844	20	7BA	
APS II	6	pprox 0.07	200	1104	8	(5-8)BA	
Spring-8 II	6	0.10	100	1436	13	5BA	

New Storage Ring Projects

PETRA III @ DESY

Best emmittance today: $\epsilon_h = 1 \text{ nm rad } @ 6 \text{ GeV}$

MAX IV in Lund

Under construction $\epsilon_{h} = 0.2-0.3 \text{ nm rad} @ 3.7 \text{ GeV}$

NSLS II @ BNL

Under construction $\epsilon_h = 0.55 \text{ nm rad } @ 3 \text{ GeV}$

Upgrades

APS @ ANL

 ϵ_h = 0.07 nm rad @ 6 GeV

 $\epsilon_{\rm h}$ = 0.1-0.15 nm rad @ 6 GeV

Spring-8 in Hyogo, Japan

 $\epsilon_{\rm h}$ = 0.11 nm rad @ 6 GeV

2015 Cheiron School

Enjoy the Cheiron School!

Thanks to many people for slides Particularly Edgar Weckert, DESY

2015 Cheiron School