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Coherence 
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Born and Wolf, Chapter 10 
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Coherence, partial coherence, and incoherence 
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Spatial and temporal coherence 
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Marching band and coherence lengths 
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Spectral bandwidth and longitudinal coherence length 
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A practical interpretation of spatial coherence 
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Partially coherent radiation approaches uncertainty 
principle limits 
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X-rays from relativistic electrons 
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Courtesy of John Madey 
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Undulator radiation from a small electron beam 
radiating into a narrow forward cone is very bright 
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Undulator radiation 
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Following Albert Hoffman 
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Calculating Power in the Central Radiation Cone: Using the well known 
“dipole radiation” formula by transforming to the frame of reference 
moving with the electrons 
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Power in the central cone 
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Power in the central radiation cone  
for three soft x-ray undulators 
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Power in the central radiation cone  
for three hard x-ray undulators 
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Ordinary light and laser light 

18 

Ordinary thermal light source, atoms 
radiate independently. 

A pinhole can be used to obtain spatially 
coherent light, but at a great loss of power. 

A color filter (or monochromator) can be 
used to obtain temporally coherent light, 
also at a great loss of power. 

Pinhole and spectral filtering can be used to 
obtain light which is both spatially and 
temporally coherent but the power will be 
very small (tiny). 

All of the laser light is both spatially and 
temporally coherent*. 

Arthur Schawlow, “Laser Light”, Sci. Amer. 219, 120 (Sept. 1968)  
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Spatially coherent undulator radiation 
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Courtesy of  Kris Rosfjord, UCB 
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Spatially and spectrally filtered undulator radiation 

20 



Attwood_Cheiron_Sept2015_2.ppt 

A soft x-ray coherence beamline at the ALS 
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A hard x-ray coherence beamline at the APS 
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Coherent power at SPring-8 



Attwood_Cheiron_Sept2015_2.ppt 

Measuring spatial coherence with Young’s double slit 
interferometer 
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Spatial coherence measurements of undulator 
radiation using Young’s 2-pinhole technique 

λ = 13.4 nm, 450 nm diameter pinholes, 1024 x 1024 EUV/CCD at 26 cm ALS, 1.9 GeV, λu = 8 cm, N = 55

Courtesy of Chang Chang, UC Berkeley and LBNL. 
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Spatial coherence measurements of undulator 
radiation using Young’s 2-pinhole technique 

λ = 13.4 nm, 450 nm diameter pinholes, 1024 x 1024 EUV/CCD at 26 cm ALS, 1.9 GeV, λu = 8 cm, N = 55

Courtesy of Chang Chang, UC Berkeley and LBNL. 
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Ordinary light and laser light 
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Ordinary thermal light source, atoms 
radiate independently. 

A pinhole can be used to obtain spatially 
coherent light, but at a great loss of power. 

A color filter (or monochromator) can be 
used to obtain temporally coherent light, 
also at a great loss of power. 

Pinhole and spectral filtering can be used to 
obtain light which is both spatially and 
temporally coherent but the power will be 
very small (tiny). 

All of the laser light is both spatially and 
temporally coherent*. 

Arthur Schawlow, “Laser Light”, Sci. Amer. 219, 120 (Sept. 1968)  
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Coherence: laser, undulator, free electron laser 
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Undulators, FELs and coherence 
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Spatial and temporal coherence  
of undulators and FELs 
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The evolution of incoherent clapping  
to coherent clapping 
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Suggested by Hideo Kitamura, 
(RIKEN) 



Attwood_Cheiron_Sept2015_2.ppt 

The bunching advantage of FELs 

In an undulator with random, uncorrelated electron positions within 
the bunch, only the radiated self-fields E add constructively. 

• Coherence is somewhat limited 
• Power radiated is proportional to Ne (total # electrons) 

For FEL lasing the radiated fields are strong enough to form 
“microbunches” within which the electron positions are well 
correlated. Radiated fields from these correlated electrons are in 
phase. The net electric field scales with Nej, the # of electrons in the 
microbunch, and power scales with Nej

2 times the number of 
microbunches, nj. 

• Essentially full spatial coherence 
• Power radiated is proportional to ΣnjNej

2; Gain ~ 3 × 106 
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FEL Physics 
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Equations of motion for the stronger electric field FEL 
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Undulators and FELs 
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Seeded FEL 

Seeded FEL. Initial bunching driven 
by phase coherent seed laser pulse. ���
Improved pulse structure and spectrum.
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Spatial and temporal coherence  
with undulators and FELs 
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Electron energies and subsequent axis crossings are affected by 
the amplitude and relative phase of the co-propagating field 
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FEL Microbunching 

39 

Courtesy of Sven Reiche, UCLA, now SLS 
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Gain and saturation in an FEL 
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FEL lasing and the parameter ρFEL 
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Measuring FEL spatial coherence 
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Courtesy of I. Vartanyants (DESY) and A. Sakdinawat (SLAC); PRL 107, 144801 (30Sept2011) 

LCLS, 780 eV, 300 fsec, ¼ nC,1mJ/pulse 
78% energy in TEM00 mode 
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The coherence properties of Free Electron Lasers 
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Measuring the FEL SASE spectrum 
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Courtesy of D. Zhu, J. Hastings, W. Feng, (SLAC); APL 101, 034103 (July 2012)   
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Reduced FEL SASE spectra, thus longer coherence 
length, with “self-seeding” 
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J. Amann, et al., 
Nature Photonics 6, 693 (Oct 2012)   

20 eV 
0.4 eV = 50:1 reduction 

Δλ 
λ 

8 keV 
0.4 eV = = 2 × 104 

2 × 104 

2 = × 1.5 Å 

1.5 µm 
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Pump-probe capabilities at SACLA 
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Courtesy of H. Tanaka, SACLA 
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FEL pumped, narrow line, Cu Kα atomic laser at 1.54 Å 
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Courtesy of M. Yabashin, SACLA 
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Typical FEL parameters 
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Probing matter on the scale of nanometers  
and femtoseconds 
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Science and Technology of  Future Light Sources (Argonne, Brookhaven, LBNL and SLAC: Four lab report to 
DOE/Office of  Science, Dec. 2008) 
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2nd Edition in progress: new FEL, HHG, Coherence, 
and X-ray Imaging chapters 
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UC Berkeley 
www.coe.AST.berkeley.edu/sxr2009 
www.coe.AST.berkeley.edu/srms  
www.youtube.com 


